If it's not what You are looking for type in the equation solver your own equation and let us solve it.
483=12x^2
We move all terms to the left:
483-(12x^2)=0
a = -12; b = 0; c = +483;
Δ = b2-4ac
Δ = 02-4·(-12)·483
Δ = 23184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23184}=\sqrt{144*161}=\sqrt{144}*\sqrt{161}=12\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{161}}{2*-12}=\frac{0-12\sqrt{161}}{-24} =-\frac{12\sqrt{161}}{-24} =-\frac{\sqrt{161}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{161}}{2*-12}=\frac{0+12\sqrt{161}}{-24} =\frac{12\sqrt{161}}{-24} =\frac{\sqrt{161}}{-2} $
| 2/x=1/6 | | Y=-(x-0)+3 | | x0.5=0.3 | | 292=64+12x | | 4x-20=x+7=48 | | C=3t^2-96t+1014 | | 5n-2n=8 | | 0.3a=31 | | -3g-3=-30 | | |2x-5|=-7x+4 | | 2/5h-2.2=3 | | 3x+2(4x)=0 | | 1/40x=1/8 | | -11x+83=-17 | | 60^2x=1100 | | -3/5(10x+5)=9 | | -49=10x+171 | | -49=10x=17 | | 0.3/0.5*x=6 | | -12x+11=-83 | | -3/4x=-11/12+2/3x | | 4x/5=1.2 | | 5=x/2+1 | | |3+x|-9=21 | | -d+4=12 | | 8-4y=19y-6 | | -16=2x+42 | | 165=x+5x+(6x-3) | | 7+y+9=48 | | 7y-8=18y-8 | | 3-7x=-95 | | w/3+17=45 |